Organic Chemistry (IGCSE Chemistry Syllabus 2016-2018) | Number of carbon(s) | Root | Alkanes | Alkenes | Alcohols | Carboxylic acids | |---------------------|-------|-----------------------|-----------------------|------------------------|---------------------------------| | 1 | Meth- | Meth <mark>ane</mark> | Meth <mark>ene</mark> | Methanol | Methan <mark>oic</mark>
acid | | 2 | Eth- | Eth <mark>ane</mark> | Eth <mark>ene</mark> | Eth <mark>anol</mark> | Ethanoic acid | | 3 | Prop- | Prop <mark>ane</mark> | Prop <mark>ene</mark> | Prop <mark>anol</mark> | Propan <mark>oic</mark>
acid | | 4 | But- | But <mark>ane</mark> | But <mark>ene</mark> | Butanol | Butan <mark>oic acid</mark> | | 5 | Pent- | Pentane | Pentene | Pentanol | Pentan <mark>oic</mark>
acid | | 6 | Hex- | Hex <mark>ane</mark> | Hex <mark>ene</mark> | Hexanol | Hexanoic acid | ### **Fuels** Petroleum is separated into fractions which are useful via fractional distillation (based on their boiling point) #### **Homologous Series** - o Characteristics of a homologous series are as follows: - Same general formula - Consecutive members of the series differ by CH₂ - Similar chemical properties - Same functional group - Gradual change in physical properties #### **Isomerism** - o Molecule with the same molecular formula but different structural formula - o IUPAC naming: - Choose the longest chain - Determine the position of the side chain, using the smallest number - o Examples: - a. Draw and name the isomers of butane Note: To draw the isomers of hydrocarbon, straight chain hydrocarbon can be converted into branch chain hydrocarbon b. Draw and name the isomers of propanol Note: To draw the isomers of alkene, alcohol, and halogenoalkane, the **functional group** can be shifted from the either end of carbon to the middle carbon ## Alkanes and alkenes o Alkane and alkenes are hydrocarbon – molecule that contains carbon and hydrogen only ## **Dr. Catherine Tan** | D1 1 1 | G' 1 1 1 1 | 7 | | | | |---------------------|--|---|--|--|--| | Physical properties | Simple covalent molecule | | | | | | | Low melting point and boiling point – due to weak intermolecular | | | | | | | forces | | | | | | | Insoluble in water | | | | | | | Does not conduct electricity | | | | | | | Volatility decreases down the group | | | | | | Chemical | 1. Combustion | 1. Combustion | | | | | properties | Excess O ₂ : | Excess O ₂ : | | | | | | $CH_4 + 2O_2 \rightarrow \frac{CO_2}{2} + 2H_2O$ | $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$ | | | | | | Limited O ₂ : | Limited O ₂ : | | | | | | $CH_4 + 3/2O_2 \rightarrow CO + 2H_2O$ | $C_2H_4 + 2O_2 \rightarrow 2CO + 2H_2O$ | | | | | | $2 \text{ CH}_4 + 3\text{O}_2 \Rightarrow 2\text{CO} + 4\text{H}_2\text{O}$ | | | | | | | | Very limited O ₂ : | | | | | | Very limited O ₂ : | $C_2H_4 + O_2 \rightarrow 2C + 2H_2O$ | | | | | | $CH_4 + 2O_2 \rightarrow \frac{C}{C} + 2H_2O$ | | | | | | | | 2. Addition | | | | | | 2. Substitution | i. Hydrogen | | | | | | Condition: UV light, halogen (e.g. | Alkene + $H_2 \rightarrow$ Alkane | | | | | | Cl ₂ , Br ₂ , I ₂) | $C_2H_4 + H_2 \rightarrow C_2H_6$ | | | | | | $CH_2, B1_2, 12)$
$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$ | | | | | | | Chloromethane | ii. Hydrogen halide | | | | | | Note: This process can happen | (e.g. HCl) | | | | | | continuously if chlorine gas is in | (e.g. HCl) Alkene + HCl → Halogenalkane | | | | | | • | 1 | | | | | | excess and in the presence of UV light | $C_2H_4 + HCl \rightarrow C_2H_5Cl$ | | | | | | $CH_3Cl + Cl_2 \rightarrow CH_2Cl_2 + HCl$ | iii. Water | | | | | | Dichloromethane | Alkene + water → Alcohol | | | | | | Diemoromethane | | | | | | | CH.Cl. + Cl> CHCl. + HCl | $C_2H_4 + H_2O \rightarrow C_2H_5OH$
Ethanol | | | | | | CH ₂ Cl ₂ + Cl ₂ → CHCl ₃ + HCl | Ethanoi | | | | | | Trichloromethane | in III-laaan | | | | | | | iv. Halogen | | | | | | $CHCl_3 + Cl_2 \rightarrow CCl_4 + HCl$ | (e.g. Br ₂) | | | | | | Tetrachloromethane | $C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$ | | | | | | | (dichloroethane) | #### **Dr.** Catherine Tan 3. Thermal cracking Use of heat and catalyst to break large molecule into smaller molecule Alkane \rightarrow Alkane + Alkene $C_{17}H_{36} \rightarrow C_{10}H_{22} + C_7H_{14}$ Alkane \rightarrow Alkene + Alkene + H₂ $C_{17}H_{36} \rightarrow C_{10}H_{20} + C_7H_{14} + H_2$ 3. Oxidation Condition: oxidizing agent, e.g. acidified $KMnO_4$, $K_2Cr_2O_7$ Ethanoic acid 4. Addition polymerization The polymerisation of ethene in to poly(ethene) ## Alcohols and carboxylic acids | | Alcohols | Carboxylic acids | |------------------|---|--| | General formula | $C_nH_{2n+1}OH$ | $C_nH_{2n+1}COOH$ | | Functional group | -OH (hydroxyl group) | -COOH (carboxyl group) | | Physical | Covalent molecule | Covalent molecule | | properties | Melting point and boiling point are higher than alkane and alkene due to the presence of -OH group which can form hydrogen bond with water molecules Does not conduct electricity Volatility decreases down the group | Melting point and boiling point are higher than alkane and alkene due to the presence of -COOH group which can form hydrogen bond with water molecules Does not conduct electricity | | Chemical | 1. Combustion | 1. Neutralization | | properties | Excess O ₂ : | i. Metal | | FF | $CH_3OH + 3/2O_2 \rightarrow CO_2 + 2H_2O$ | (e.g. Na) | | | $2CH_3OH + 3 O_2 \rightarrow 2CO_2 + 4H_2O$ | 2CH ₃ COOH + 2Na → | | | | 2CH ₃ COONa + H ₂ | | | Limited O ₂ : | Sodium ethanoate | | | $CH_3OH + O_2 \rightarrow CO + 2H_2O$ | Sociali cinarioace | | | | ii. Metal oxide | | | Very limited O ₂ : | (e.g. MgO) | | | $CH_3OH + 1/2O_2 \rightarrow C + 2H_2O$ | 2CH ₃ COOH + MgO → | | | $2CH_3OH + O_2 \rightarrow 2C + 4H_2O$ | $(CH_3COO)_2Mg + H_2O$ | | | 2. Oxidation | Magnesium ethanoate | | | Condition: oxidizing agent, e.g. | iii. Metal carbonate | | | acidified KMnO ₄ , K ₂ Cr ₂ O ₇ | (e.g. CaCO ₃) | | | Н Н Н Н Н О | 2CH ₃ COOH + CaCO ₃ → | | | | $(CH_3COO)_2Ca + H_2O + CO_2$ | | | H − Ĉ − Ĉ − Ĉ − OH | Calcium ethanoate | | | propan-1-ol propanoic acid | iv. Metal hydroxide | | | | (e.g. NaOH) | | | | CH ₃ COOH + NaOH → | | | | CH ₃ COONa + H ₂ O | | | | Sodium ethanoate | | | | | | | | | | | 3. Dehydration | 2. Esterification | | |--|--|---|--| | Condition: hot phosphoric acid or hot aluminium oxide $C_2H_5OH \rightarrow C_2H_4 + H_2O$ | | H-C-C-C-H H-C-C-C-C | | | | 4. Esterification | propanoic acid + ethanol ethyl propanoate + water | | | | H-C-C-C-H H-C-C-C-H H-H-C-C-C-H H-H-C-C-H H-H-C-C-C-H H-H-C-C-C-H H-H-C-C-C-H H-H-C-C-C-H H-H-C-C-C-H H-H-C-C-C-H H-H-C-C-H H-H-C-C-C-H H-H-H-C-C-H H-H-C-C-H H-H-H-H- | | | | | | | | | Production | 1. Alkene + water | 1. Oxidation of alkene | | | | $C_2H_4 + H_2O \rightarrow C_2H_5OH$ | Condition: oxidizing agent, e.g. | | | | Ethanol | acidified KMnO ₄ , K ₂ Cr ₂ O ₇ | | | | Advantages: Fast | CH3-CH2CH2 KMnO4 CH3-CC + CO2 | | | | Disadvantages : Not environmental | ОН | | | | friendly (use non-sustainable | Ethanoic acid | | | | resource) | | | | | | | | | | 2. Fermentation | 2. Oxidation of alcohol | | | | $C_6H_{12}O_6 \rightarrow 2CH_3CH_2OH + 2CO_2$ | Condition: oxidizing agent, e.g. | | | | (Glucose) (ethanol) (carbon | acidified KMnO ₄ , K ₂ Cr ₂ O ₇ | | | | dioxide) | | | | | Advantages : Environmental friendly | H-¢-¢-c, OH → H-¢-¢-¢, | | | | Disadvantages : Slow, many side- | <u> Н Н Н Н О-Н</u> | | | | products | propan-1-ol propanoic acid | | | Uses | - Solvent | - Vinegar | | | | - Sanitizer | - Perfume making | |