

Biotechnology and Genetic Engineering

(IGCSE Biology Syllabus 2016-2018)

Biotechnology involves using living organisms to carry out processes:

Making biofuel

- Use plants to make sugars which yeast then breaks down to make ethanol
- Ethanol can be used as a fuel
 - Maize is treated with amylase enzyme (starch to glucose)
 - Add yeast: anaerobic respiration

- Ethanol is then extracted by distillation
- Mixed with gasoline to increase energy and can be used in cars

Bread making

- The dough is kept in a warm, moist environment (28°C)
- Yeast ferments sugar making carbon dioxide which creates bubbles, so bread rises
- Cooking (at 180°C): kill yeast, evaporates alcohol and hardens outer surface

Uses of enzymes

- Pectinase
 - Fruit juices are extracted using pectinase
 - Pectin helps plant walls stick together
 - If pectin is broke down, it's easier to squeeze juice from the fruit
 - Extraction of juice from fruit, making juice clear not cloudy

- Washing powders

- Biological washing powders and liquids contain enzymes that help remove stain
- The enzymes are coated with a special wax that melts in the wash releasing the enzyme
- Once the stains have been broken down, they are easier for detergents to remove
- Proteases break down protein in stains
- Lipases break down stains containing fats and oil
- Carbohydrases break down carbohydrate-based stains

- Lactase

- Enzyme that breaks down lactose (sugar found in milk)
- People can stop making lactase naturally, therefore can't digest lactose
- Milk can be treated with lactase to break down lactose before a person drinks it

Why microorganisms?

- No ethical issues in using them
- Contain plasmids that can be used in moving genes from one organism's cells into other
- Easy to store
- Easy to grow in lab
- Able to produce wide range of substances
- The reproduction rate is high

Production of Penicillin

- o **Penicillin:** an antibiotic produced by a fungus (penicillium)
- o Stainless steel fermenter is filled with medium containing sugars and ammonium salts
- Penicillium is added to produce penicillin. They use sugar for respiration and ammonium salts to make protein and nucleic acids
- The fermenter consists of:
 - **Probes**: monitor temperature and pH
 - **Air**: provides oxygen for aerobic respiration
 - Water-coated jacket: removes heat to maintain temperature
 - Stirrer: keeps the microorganism suspended while maintaining an even temperature

Genetic Engineering

- Genetic engineering: changing the genetic material of an organism by removing, changing or inserting individual genes
- o Examples:
 - The insertion of human genes into bacteria to produce human insulin
 - The insertion of genes into crop plants to confer resistance to herbicides
 - The insertion of genes into crop plants to confer resistance to insect pests
 - The insertion of genes into crop plants to provide additional vitamins

Human insulin in bacteria

- Isolation of the DNA making up a human gene using restriction enzymes, forming sticky ends
- Cutting of bacterial plasmid DNA with the same restriction enzymes, forming complementary sticky ends
- Insertion of human DNA into bacteria plasmid DNA using DNA ligase to form a recombinant plasmid
- Insertion of plasmid into bacteria
- Replication of bacteria containing recombinant plasmids which make human protein as they express the gene

Genetically Modified (GM) Crops

Advantages	Disadvantages
 Uniform in shape – easy to transport Growing season shorter Drought resistant – less water Higher yield Herbicides and pesticides resistant 	 Natural species may die Taste often not as good Lead to development of super weeds – stronger than GM No one knows long term effect on humans